## Physik

### Refine

#### Keywords

- Magnetismus (4) (remove)

- Dynamics of vortices in the two-dimensional anisotropic Heisenberg model with magnetic fields. (2003)
- The subject of this work is the dynamics of a vortex in a classical 2-dimensional spin system with anisotropic exchange interaction under the combined action of magnetic fields and damping. Static as well as dynamic magnetic fields were employed (as dynamical field we used a homogeneous field which is rotating in the XY-plane). The most important goal of this work was to demonstrate that there is a coupling between the inner and translational freedom degrees of the vortex, coupling which is responsible for at least 2 phenomena that we study in detail in this Thesis: 1. the switching or flipping of the vortex polarization (for negative field frequency), and 2. the formation of stable orbits of the vortex center around the center of the system driven by the rotating field (for positive frequency). It was known to us that the polarization can change abruptly its sign under the action of a field rotating in the XY-plane, for p omega < 0 and appropriate field amplitudes. In the Chapter 4 we have investigated the possible underlying mechanisms for this phenomenon. Our main results can be summarized as follows: a) The flipping times do not depend essentially on the size of the system, provided that the lattice is large enough (radius L >~ 36 lattice constants). In other words, the switching of the vortex polarization is not much affected by the presence of boundaries. b) In our numerical simulations we observed a clear correlation between the core magnetization dynamics (the oscillations of the core spins in the out-of-plane direction) and the velocity of the vortex center in the plane of the lattice. c) A diagram of flipping events as a function of the field parameters, from extensive numerical simulations with an OP vortex in a rotating magnetic field, was presented. We found out that in the (omega, h) parameters space there is no well-defined curve which separates the regime where the flips do not occur from the regime where they do. We found intervals ("windows'') of intermittent flip and non-flip events. d) The switching of the vortex polarization can be achieved also by applying a static magnetic field with both in-plane (IP) and out-of-plane (OP) components. The IP component of the field sets the vortex into translational movement in the XY-plane, while the OP component breaks the vertical symmetry favoring one of the two possible orientations. e) The switching dynamics may be described in terms of a core model which takes into account a coupling between the vortex polarization dynamics and the motion of the vortex center. We showed that a reduced core model, which is valid near the threshold of the IP-OP vortex instability (lambda ~ lambda c), can be mapped to a generalized Thiele equation with an inertial term. f) It is plausible that the phenomenon of switching we described will not be essentially affected by the inclusion of a dipole-dipole interaction. The experimental works on nanodisks mentioned in the Introduction of this Thesis reported the observation of vortices in either of two polarization states, and the switching between them was forced by means of static fields perpendicular to the plane of the disks. Rotating magnetic fields might be used as well static fields with both IP and OP components to make this switching more favorable. In the Chapter 5 we turned to the study of the movement of the vortex in the XY plane, in the presence of the IP rotating field. Attention was directed to the existence of stable orbits, where the vortex stays inside the system in a stationary movement, forming circular limit cycles. We discussed then the failure of the conventional Thiele approach to describe this phenomenon, and this motivated us to formulate an extended collective coordinate Theory, which leads to a qualitative agreement with the results of the simulations. A diagram of the different types of trajectories, as a function of the field parameters, showed the presence of non-monotonous effects and "windows'', like in the case of the switching diagram. We are led to conclude that for some regions of the field parameters space, the system exhibits chaos -which is typical for many-body systems-, though no particular tool of the chaos theory was used to study our discrete and collective coordinate models, from this viewpoint. Our theoretical work qualitatively suggests that it would be interesting to apply in the experiments weak rotating fields like those used here, to control both the mean position of a vortex in larger magnetic dots (where the vortex center could show dynamics) and at the same time the sign of the out-of-plane core magnetization. Future directions of this work may include the use of inhomogeneous fields, particularly with a gaussian localization in a small region of the lattice or "spot'', as a model of the field of a laser beam.

- Dynamik und thermische Diffusion von Solitonen in ein- und zweidimensionalen Heisenbergmagneten (2005)
- Gegenstand dieser Arbeit ist die themische Diffusion von einer solitären Welle auf der anisotropen Easy-Axis-Heisenbergspinkette (HSK) mit nächster Nachbarwechselwirkung. Die Form des Solitons wird durch die 1-Soliton-Lösung der anisotropen Landau-Lifshitz-Gleichung beschrieben. Die Ankopplung des Systems an ein Wärmebad wird durch weißes Rauschen und Gilbert-Dämpfung modelliert. Das Rauschen verursacht Veränderungen in der Struktur und Position des Solitons und produziert Magnonen. Unter Verwendung kollektiver Variablen beschreiben wir diese Effekte und vernachlässigen Magnonen (d.h. wir verwenden die sogenannte adiabatische Approximation). Wir stellen die stochastischen Bewegungsgleichungen auf, welche wir sowohl analytisch als auch numerisch lösen. Wir treffen Vorhersagen für das zeitlische Verhalten der Mittelwerte und Varianzen der kollektiven Variabeln und überprüfen diese durch Spin-Dymamik-Simulationen. Für die Position des Solitons finden wir eine sehr gute Übereinstimmung zwischen Simulationen und den theoretischen Ergebnissen, wohingegen wir für die anderen kollektiven Variablen eine Abweichung zwischen Simulationen und Theorie feststellen. Die stochastische Dynamik der Position zeigt die Eigenschaften Brownscher Bewegung und der Superdiffusion. Diese Ergebnisse stimmen qualitativ mit denen des isotropen Systems überein. In dieser Arbeit haben wir insbesondere untersucht, wie die Anisotropie in die stochastischen Bewegungsgleichungen eingeht und die sich daraus ergebenden änderungen im diffusiven Verhalten des Solitons. Weiterhin unteruchen wir dynamische topologische Solitonen in klassischen zweidimensionalen Easy-Axis-Heisenbergmagneten. Die Eigenschaften solcher Solitonen behandeln wir sowohl analytisch im Kontinuumslimit als auch numerisch mit Spindynamiksimulationen im diskreten System. In den Simulationen wird eine Kreisbewegung des Solitons beobachtet. Diese Kreisbewegung wird durch die Anregung von internen Magnonenmoden im Soliton erklärt.

- Surface Deformations of Magnetic Continua in Homogeneous Fields (2009)
- In this thesis, experiments with magnetic liquids and gels are presented. Ferrofluids are synthetically created suspensions of magnetic nanoparticles in a carrier liquid. By adding a gelator, such a ferrofluid can be turned into a ferrogel. The magnetic properties of these substances are similar to a usual paramagnet with the important difference, that the susceptibility of the former is higher by a factor of 10^3 to 10^6. By the application of a homogeneous field, a transformation of the shape of a magnetic sample can be induced. In this thesis, four experiments on the surface deformation in homogeneous magnetic fields are presented. Two geometric configurations are considered: a horizontally extended flat layer with a free surface as well as a spherical sample. In both cases, the application of a homogeneous magnetic field leads to changes of the shape of the free boundary. In the case of the spherical geometry, the sample is deformed into a prolate ellipsoid under the action of the field, the so called magnetodeformational effect. In case of the extended flat layer, an abrupt shape transition into a patterned state takes place, the normal field or Rosensweig instability. In contrast to the smooth deformation of the sphere, this is an instability, which breaks the translational symmetry, and the transition occurs at a certain threshold value of the magnetic induction. Each of the four experiments in this thesis is briefly summarized in the following paragraphs. Part I of the thesis considers ferrofluids. In chapter 2, the ideal geometry of an infinitely extended flat layer is intentionally reduced to a cylinder such that only a single spike in the centre exists, and the solution space becomes rotationally symmetric. This makes the problem very feasible for experimental methods and numerical simulations. Two measurement techniques are applied and compared to each other, namely an X-ray technique, where the surface deformation is extracted from radioscopic images, and a laser technique, which focuses a laser spot onto the surface. The experiments and the simulations, the latter performed in close cooperation with a group in Athens, show a convincing agreement within a few percent. It remains an open question, whether the result can be deduced in analytic form, however. In chapter 3, a highly viscous ferrofluid is utilized to study the nonlinear dynamics of the normal field instability at very low Reynolds numbers. The linear growth rate for the growth and decay of the pattern at small amplitudes is extracted from the measurements and compared with an existing theoretical model. In addition, the measurement technique provides the reconstruction of a fully nonlinear amplitude equation, which is qualitatively compared to model equations. These nonlinear amplitude equations can only describe the dynamics of the growth in the immediate vicinity of the critical point so far. For a quantitative comparison, there is a need for a model with an extended range of validity. Additionally, localized patterns are observed which arise spontaneously in the neighbourhood of the unstable solution branch, which have previously been observed with the help of an external disturbance Part II of the thesis deals with thermoreversible ferrogels. Chapter 4 studies the magnetodeformational effect. A ferrogel sphere is exposed to homogeneous magnetic field. When the field is applied suddenly, the sphere not only elongates in the direction of the field, but also vibrates about the new equilibrium. On a longer time scale, the deformation continuously increases due to the viscoelastic properties of the gel. Both phenomena can well be described by a harmonic oscillator model, where the spring constant changes with time. From the deformation parallel and perpendicular to the applied field, Poisson´s ratio can be calculated, which turns out to be close to the limit of incompressibility. The absolute values of the deformation are compared to recent theoretical models. The resulting deviation of about 10% is attributed to the viscoelastic properties of the ferrogel, which are not taken into account in the static models. In chapter 5, the normal field instability is realized for the first time with a ferrogel. A flat layer of a thermoreversible ferrogel is exposed to a homogeneous magnetic field at different temperatures, where the gel is viscoelastic. This is a consequence of the need for a very soft material, such that the growth of the pattern is not completely suppressed by the elastic forces. The magnetic field is periodically modulated in time, and the amplitude of the instability is measured, which is modulated with the same frequency. The comparison with rheological measurements reveals a scaling of the modulated amplitude with the complex viscosity of the ferrogel. A comparison with the theoretical model for a ferrogel is difficult due to the viscoelasticity of the gel.

- Superstructures of Magnetic Materials (2013)
- This dissertation reports on the results of studies on magnetic materials as the ternary carbide SmNiC2 and the perovskite-related layered compounds La5(Ti0.80Fe0.20)5O17 and La6(Ti0.67Fe0.33)6O20. Studies were performed with single-crystal X-ray diffraction and subsequently refinement and analysis of the crystal structures. Measurements of SmNiC2 were performed within the temperature range of 8 - 300 K. Refection peaks were analyzed for a possible peak-splitting as a consequence of a lowering of the symmetry of the crystal lattice in the charge-density wave state as well as in the ferromagnetically ordered state. It was found, that no lattice distortion is associated with the phase transitions. In both phases the crystal lattice has orthorhombic symmetry. A structure model of the incommensurately modulated structure in the charge-density wave state describes the structure with layers of Sm and Ni atoms, stacked along the c axis. Between the layers C atoms are arranged as C2-pairs. Ni atoms form dimerized chains along the a axis and show the largest displacement modulation of all atoms as well as the largest variations of the bond distances to neighboring atoms. Thus, the Ni atoms carry the valence band, which is responsible for the charge-density wave. For a single layer of Ni atoms a commensurate charge-density wave would result. A frustration is caused by the interchange of the modulation with the lattice centering of the structure, which renders the modulation incommensurate in all layers. The two n = 5 and 6 members of a homologous series of perovskite-related layered compounds show completely different magnetic properties. Indeed both compounds remain paramagnetic in the complete analyzed temperature range of 4{400 K. But especially the n = 6 compound shows a behavior clearly different from the common paramagnetic characteristic with a ferromagnetic interaction at higher temperatures. At about room temperature a crossover to an anti-ferromagnetic interaction appears. Whereas the n = 5 compound does not show a crossover nor a clear (anti-) ferromagnetic interaction can be found. Structures of both compounds were successfully described on the basis of a unique structure type within (3+1)-dimensional superspace with modulation functions and modulation wave vectors depending in a systematic way on n. Selected structural parameters, as for example the B{O{B bond angle, do not show any noticeable change at temperatures of about 290 K. Instead the maximum concentration of magnetic Fe atoms realized in the central layers of each slab is suggested as the mechanism for the different magnetic properties. In the case of the n = 5 compound the maximum concentration is too low for the formation of magnetic interacting clusters. In the case of n = 6 clusters of 52 iron ions in average are formed. At temperature above room temperature the magnetic interaction within the clusters dominates, while at lower temperatures the anti-ferromagnetic interaction between clusters in neighboring layers is dominant. The thermal expansion of both compounds anisotropic with the strongest expansion along the a axis, parallel to the layers. This is different to the expansion in many other layered structures. Thereby the slabs show a clear expansion with rising temperature, while the interslab distances are almost temperature-independent. Valences of Ti and Fe ions were calculated with the Bond-Valence method. The results show, that calculated valences depend on the site occupancy by Ti and Fe ions. The best agreement between formal and calculated valences are found for sites, which are almost exclusively occupied by Ti ions. In these cases the oxygen environment and the valences are that of Ti4+. At sites occupied by both ions the refined oxygen positions represent the average of oxygen positions in TiO6 and FeO6 octahedra, weighted to the occupancies of Ti and Fe.