Inclusion-maximal integral point sets over finite fields

We consider integral point sets in affine planes over finite fields. Here an integral point set is a set of points in $GF(q)^2$ where the formally defined Euclidean distance of every pair of points is an element of $GF(q)$. From another point of view we consider point sets over $GF(q)^2$ with few and prescribed directions. So this is related to Redeis work. Another motivation comes from the field of ordinary integral point sets in Euclidean spaces. In this article we study the spectrum of integrWe consider integral point sets in affine planes over finite fields. Here an integral point set is a set of points in $GF(q)^2$ where the formally defined Euclidean distance of every pair of points is an element of $GF(q)$. From another point of view we consider point sets over $GF(q)^2$ with few and prescribed directions. So this is related to Redeis work. Another motivation comes from the field of ordinary integral point sets in Euclidean spaces. In this article we study the spectrum of integral point sets over $GF(q)^2$ which are maximal with respect to inclusion. We give some theoretical results, constructions, conjectures, and some numerical data.show moreshow less
Wir betrachten ganzzahlige Punktmengen in affinen Ebenen über endlichen Körpern. Eine ganzzahlige Punktmenge ist hier eine Teilmenge von GF(q)^2, bei der der formal definierte Euklidische Abstand zwischen je zwei Punkten im Körper GF(q) liegt. In diesem Artikel betrachten wir das Spektrum der Kardinalitäten von inklusionsmaximalen ganzzahligen Punktmengen über GF(q)^2.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • frontdoor_exportcitavi

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Institutes:Mathematik
Author: Michael Kiermaier, Sascha Kurz
Year of Completion:2007
SWD-Keyword:Galois-Feld; Kombinatorik
Tag:Paley-Graphen; endliche Geometrie; erschöpfende Suche; ganzzahlige Abstände
Paley graphs; exhaustive search; finite geometry; integral distances
Dewey Decimal Classification:510 Mathematik
MSC-Classification:51E20 Combinatorial structures in finite projective spaces [See also 05Bxx]
URN:urn:nbn:de:bvb:703-opus-4180
Document Type:Preprint
Language:English
Date of Publication (online):15.04.2008