Nilmanifolds: complex structures, geometry and deformations

Nilmannigfaltigkeiten: Komplexe Strukturen, Geometrie und Deformationen

We consider nilmanifolds with left-invariant complex structure and prove that in the generic case small deformations of such structures are again left-invariant. The relation between nilmanifolds and iterated principal holomorphic torus bundles is clarified and we give criteria under which deformations in the large are again of such type. As an application we obtain a fairly complete picture in dimension three. We show by example that the Frölicher spectral sequence of a nilmanifold may be arbitWe consider nilmanifolds with left-invariant complex structure and prove that in the generic case small deformations of such structures are again left-invariant. The relation between nilmanifolds and iterated principal holomorphic torus bundles is clarified and we give criteria under which deformations in the large are again of such type. As an application we obtain a fairly complete picture in dimension three. We show by example that the Frölicher spectral sequence of a nilmanifold may be arbitrarily non degenerate thereby answering a question mentioned in the book of Griffith and Harris. On our way we prove Serre Duality for Lie algebra Dolbeault cohomology and classify complex structures on nilpotent Lie algebras with small commutator subalgebra. MS Subject classification: 32G05; (32G08, 17B30, 53C30, 32C10)show moreshow less
Wir betrachten Nilmannigfaltigkeiten mit linksinvarianter komplexer Struktur und beweisen, dass im generischen Fall kleine Deformationen der komplexen Struktur wieder linksinvariant sind. Die Beziehung zwischen Nilmannigfaltigkeiten und iterierten holomorphen Torusprinzipalbündeln wird erläutert und wir können Kriterien ableiten unter denen Deformationen im Großen wieder vom gleichen Typ sind. Als Anwendung erhalten wir eine fast vollständiges Bild in Dimension 3. An einem Beispiel zeigen wir, dWir betrachten Nilmannigfaltigkeiten mit linksinvarianter komplexer Struktur und beweisen, dass im generischen Fall kleine Deformationen der komplexen Struktur wieder linksinvariant sind. Die Beziehung zwischen Nilmannigfaltigkeiten und iterierten holomorphen Torusprinzipalbündeln wird erläutert und wir können Kriterien ableiten unter denen Deformationen im Großen wieder vom gleichen Typ sind. Als Anwendung erhalten wir eine fast vollständiges Bild in Dimension 3. An einem Beispiel zeigen wir, dass die Fröhlicher-Spektralsequenz eines holomorphen Torusbündles beliebig weit nicht degeneriert sein kann, was eine Frage im Buch von Griffith und Harris beantwortet. Um die obigen Resultate zu erzielen entwickeln wir eine Art Serre-Dualität für Liealgebra-Dolbeault-Kohomologie und klassifizieren komplexe Strukturen auf Liealgebren mit kleiner Kommutatoralgebra. MS Subject classification: 32G05; (32G08, 17B30, 53C30, 32C10)show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • frontdoor_exportcitavi

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Institutes:Mathematik
Author: Sönke Rollenske
Advisor:Prof. Dr. Fabrizio Catanese
Granting Institution:Universität Bayreuth,Fakultät für Mathematik, Physik und Informatik
Date of final exam:13.07.2007
Year of Completion:2007
SWD-Keyword:Deformation <Mathematik>; Kompakte komplexe Mannigfaltigkeit; Komplexe Geometrie; Nilpotente Lie-Algebra; Prinzipalbündel
Tag:Nilmannigfaltigkeit; linksinvariante komplexe Struktur
left-invariant complex structure; nilmanifold
Dewey Decimal Classification:510 Mathematik
URN:urn:nbn:de:bvb:703-opus-3149
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):15.08.2007